Quantifying Abnormal Muscle Tone Due to Neurological Impairment

Thursday March 20th, 2014
Starts at 12:00 PM EST
Presented by
Elizabeth Brokaw, PhD
Kinesia HomeView™ Kinesia ProView™
MyoSense
• Impact of Neurological Impairment
 – Abnormal Muscle Tone

• MyoSense
 – Development
 – Bench Testing
 – Clinical Evaluation
• High incidence of neurological disorders
 – Abnormal muscle tone
 – Reduced independence

Center for Disease Control; Jan 2006 Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths, 2002-2006
Resistance force to passive movement
Abnormal muscle tone presents in many different forms.

– Rigidity
– Dystonia
– Spasticity
– Hypertonia
• Parkinson’s Disease
 – Stiffness or heaviness
 • Lead pipe
 • Cog wheel

UCD Medicine
https://www.youtube.com/watch?v=sJqKvaUClk
Dystonia

• Cerebral Palsy
 – Rigid/Posturing
 – Unintentional movement
Spasticity

- Stroke and Traumatic Brain Injury
 - Speed based
 - Catch
Hypertonia

- Stroke and Traumatic Brain Injury
 - Range of motion
Treatments

• Various types of treatment
 – Botox
 – Baclofen
 – Phenol injections
 – Surgical intervention
 – Deep brain stimulation
• Abnormal tone types respond differently

• Difficult to distinguish different types of tone
 – Cerebral palsy
 DBS ➔ Dystonia Baclofen ➔ Spasticity
 ? ➔ Spasticity ? ➔ Dystonia

• Research limited by current clinical outcome measures
Clinical Scales

• Specific aspects of abnormal tone
 • Modified Ashworth, Tardieu (spasticity)
 • Fahn Marsden Burke (dystonia)

<table>
<thead>
<tr>
<th>FMB Arm Evaluation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No dystonia present</td>
</tr>
<tr>
<td>1</td>
<td>Slight dystonia. Clinically insignificant</td>
</tr>
<tr>
<td>2</td>
<td>Mild. Obvious dystonia but not disabling</td>
</tr>
<tr>
<td>3</td>
<td>Moderate. Able to grasp, with some manual function</td>
</tr>
<tr>
<td>4</td>
<td>Severe. No useful grasp</td>
</tr>
</tbody>
</table>

• Low resolution
• Subjective interpretation
MyoSense Development

- Quantitative assessment of abnormal tone
- Integrate with conventional practice
 - Clinician worn
 - Reduce patient burden
 - Typical Assessment
 - Speed
 - Position
 - Force
• Prototype Hardware
 – Flexiforce FSR sensors and XBee
 – GLNT Movement Sensor (bluetooth)
• Information about orientation and speed

• Correlate with force data
MyoSense Bench Testing
Simulated Abnormal Elbow Tone

Threshold set at 45 deg/s
Distinguishing Profiles

• Hypertonia Evaluation
 – Move the simulated elbow at 5 deg/s

• Position bins and average force

• Correlation to theoretical = 0.93
• Mod-Ashworth Evaluation
 – Move the simulated elbow at 90 deg/s

• Speed bins and average force

• Correlation to theoretical = 0.80

• High speed effects of device mechanics
 – Belts and filtering
Comparing Different Abnormal Tone Profiles

• Issue
 – High speed mechanical effects
 – Acceleration
 – Change in direction

• Solution
 – Track specific speeds
 – Examine the change across speed
• Tracking specific speeds
 – 5, 25, 45, 65, 85 deg/s

• At each 20s trial
 – Average speed and average force
Comparing Different Abnormal Tone Profiles

- Correlation of 0.99
- Distinguish Profiles and Changes in magnitude
• Successful pilot evaluation of MyoSense

• Clinical evaluation with individuals with spasticity, dystonia, and cerebral palsy
MyoSense Clinical Evaluation
Clinical Evaluation Protocol

• Subjects
 – 10 Pure dystonia
 – 10 Pure spasticity
 – 10 Mixed dystonia and spasticity (Cerebral Palsy)
 – 30 Age matched controls

• Clinician manipulates limb
 – 5, 45, 90, 135, 180
 – wrist, elbow, knee, ankle
 – Mod Ashworth and Fahn Marsden Burke
Preliminary Results

Unimpaired Control
- Control 1 Right Wrist
 - 1st Evaluation

Individual with Dystonia
- FMB = 1
- FMB = 0

Subject 2 Right Wrist
- 1st Evaluation
- 2nd Evaluation

Force in lbf vs Speed Deg/S
- Extension
- Flexion
Clinical Evaluation Goals

• Goal from Clinical Evaluation
 – Differentiate types of abnormal muscle tone
 – Examine correlation to clinical measures

• Commercialization
 – Effects of spasticity and dystonia
 – Effects of treatments
Acknowledgements

• Dr. Erwin Montgomery
• Dr. Ilia Itin
• Alexandria Wyant

• Funding from NIH
 National Institute of Neurological Disorders and Stroke (1R43NS076052-01A1)
GLNT Movement Sensor

http://glneurotech.com/motion-sensor
Questions?

For more information contact:

Elizabeth Brokaw
Ebrokaw@glneurotech.com