Quantifying Abnormal Muscle Tone Due to Neurological Impairment

Thursday March 20th, 2014
Starts at 12:00 PM EST
Presented by
Elizabeth Brokaw, PhD

Kinesia HomeView[™]

Kinesia ProViewTM

MyoSense

Outline

- Impact of Neurological Impairment
 - Abnormal Muscle Tone
- MyoSense
 - Development
 - Bench Testing
 - Clinical Evaluation

Individuals With Neurological Impairment

- High incidence of neurological disorders
 - Abnormal muscle tone
 - Reduced independence

Center for Disease Control; Jan 2006 Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths, 2002-2006

Abnormal Muscle Tone

- Resistance force to passive movement
- Abnormal muscle tone presents in many different forms.
 - Rigidity
 - Dystonia
 - Spasticity
 - Hypertonia

Rigidity

- Parkinson's Disease
 - Stiffness or heaviness
 - Lead pipe
 - Cog wheel

Dystonia

- Cerebral Palsy
 - Rigid/Posturing
 - Unintentional movement

Spasticity

- Stroke and Traumatic Brain Injury
 - Speed based
 - Catch

Hypertonia

- Stroke and Traumatic Brain Injury
 - Range of motion

Treatments

- Various types of treatment
 - Botox
 - Baclofen
 - Phenol injections
 - Surgical intervention
 - Deep brain stimulation

Issues with Abnormal Tone Management

Abnormal tone types respond differently

Difficult to distinguish different types of tone

```
    Cerebral palsy DBS → Dystonia Baclofen → Spasticity
    Postonia Spasticity
```

Research limited by current clinical outcome measures

Clinical Scales

- Specific aspects of abnormal tone
 - Modified Ashworth, Tardieu (spasticity)
 - Fahn Marsden Burke (dystonia)

FMB Arm Evaluation

- No dystonia present
 Slight dystonia. Clinically insignificant
 Mild. Obvious dystonia but not disabling
 Moderate. Able to grasp, with some manual function
 Severe. No useful grasp
- Low resolution
- Subjective interpretation

MyoSense Development

- Quantitative assessment of abnormal tone
- Integrate with conventional practice
 - Clinician worn
 - Reduce patient burden
 - Typical Assessment
 - Speed
 - Position
 - Force

MyoSense

- Prototype Hardware
 - Flexiforce FSR sensors and XBee
 - GLNT Movement Sensor (bluetooth)

MyoSense Data

Information
 about
 orientation and
 speed

 Correlate with force data

MyoSense Bench Testing

Simulated Abnormal Elbow Tone

Threshold set at 45 deg/s

Distinguishing Profiles

- Hypertonia Evaluation
 - Move the simulated elbow at 5 deg/s
- Position bins and average force
- Correlation to theoretical = 0.93

Distinguishing Profiles

- Mod-Ashworth Evaluation
 - Move the simulated elbow at 90 deg/s
- Speed bins and average force
- Correlation to theoretical= 0.80
- High speed effects of device mechanics
 - Belts and filtering

Comparing Different Abnormal Tone Profiles

Issue

- High speed mechanical effects
- Acceleration
- Change in direction

Solution

- Track specific speeds
- Examine the change across speed

Comparing Different Abnormal Tone Profiles

- Tracking specific speeds
 - 5, 25, 45, 65, 85 deg/s

- At each 20s trial
 - Average speed and average force

Comparing Different Abnormal Tone Profiles

- Correlation of 0.99
- Distinguish Profiles and Changes in magnitude

Bench Testing Conclusion

Successful pilot evaluation of MyoSense

 Clinical evaluation with individuals with spasticity, dystonia, and cerebral palsy

MyoSense Clinical Evaluation

Clinical Evaluation Protocol

- Subjects
 - 10 Pure dystonia
 - 10 Pure spasticity
 - 10 Mixed dystonia and spasticity (Cerebral Palsy)
 - 30 Age matched controls
- Clinician manipulates limb
 - **-** 5, 45, 90, 135, 180
 - wrist, elbow, knee, ankle
 - Mod Ashworth and Fahn Marsden Burke

Preliminary Results

Unimpaired Control

Individual with Dystonia

FMB = 1FMB = 0

Extension

Flexion

Clinical Evaluation Goals

- Goal from Clinical Evaluation
 - Differentiate types of abnormal muscle tone
 - Examine correlation to clinical measures

- Commercialization
 - Effects of spasticity and dystonia
 - Effects of treatments

Acknowledgements

- Dr. Erwin Montgomery
- Dr. Ilia Itin
- Alexandria Wyant

Funding from NIH
 National Institute of Neurological
 Disorders and Stroke (1R43NS076052-01A1)

GLNT Movement Sensor

http://glneurotech.com/motion-sensor

Questions?

For more information contact:

Elizabeth Brokaw Ebrokaw@glneurotech.com

