Quantitative Parkinson's Gait Assessment: A high resolution measure of change in impairment

> Tuesday July 22th, 2014 Starts at 12:00 PM EST Presented by Elizabeth Brokaw, PhD

Outline

- Impairment due to Parkinson's Disease
- Deep Brain Stimulation
- Evaluations with wearable sensors
- DBS cessation research
- Role of Kinesia to improve gait outcomes

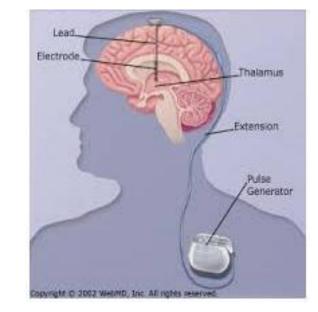
Parkinson's Disease Motor Impairments

Parkinson's Disease

- Wide range of motor symptoms
- Treatments outcomes often focus on the upper extremity
- Mobility is important for quality of life
- Increased fall risk after PD

- 68.3% fell during one year

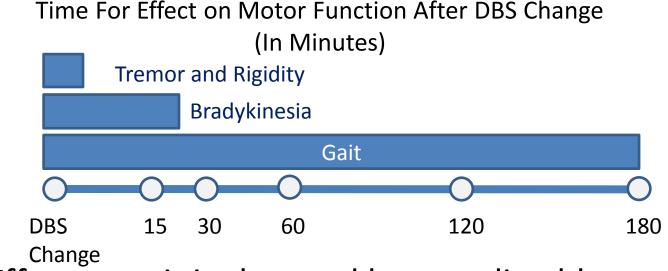
Parkinson's Disease


- Gait
 - Freezing of gait
 - Slowed movement
 - Shortened stride length
 - Flat foot strike (shuffled steps)
 - Impaired balance and posture

Deep Brain Stimulation

Deep Brain Stimulation

- Became a standard treatment for PD in the 1990's
- Effective method for improving symptoms and reducing medication burden
- Typically indicated for
 - Tremor
 - Bradykinesia
 - Rigidity


Deep Brain Stimulation for Gait Impairment

- Researcher have observed STN stimulation induced improvement in
 - Stride length
 - Walking speed
 - Freezing of gait
- Evaluation of settings and location is ongoing
 - Frequency effects
 - Pedunculopontine nucleus (PPN)

Deep Brain Stimulation Response Time

Deep Brain Stimulation

- Effects some symptoms quickly

– Effect on gait is slow and less predictable

- Unknown final effect on gait and balance
- Not optimized to improve gait and balance

Wearable Sensors

Wearable Sensors

- Quantitative Evaluation of Movement
 - Acceleration
 - Angular Velocity

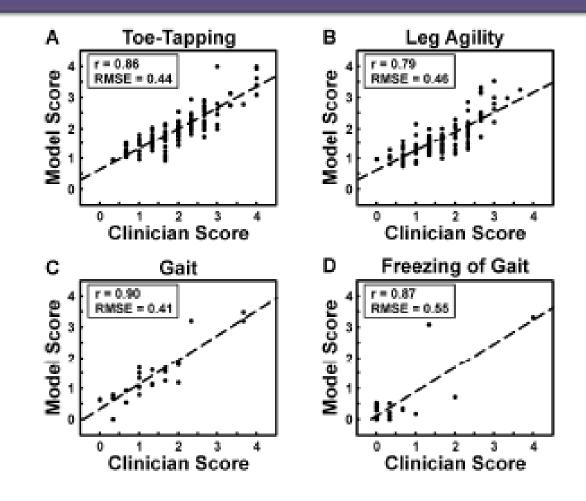
Benefits of Wearable Movement Sensors

- Objective measure of impairment
- High resolution
- Not confined to in clinic evaluations

Quantifying Effect of DBS Cessation With the Kinesia Sensors

The goal is to examine changes in impairment related to changes in to DBS settings

Kinesia


- Quantitative assessment of
 - Tremor
 - Bradykineisia
 - Dyskinesia
 - Gait
 - Freezing of gait

For more information

 http://glneurotech.com/publications/

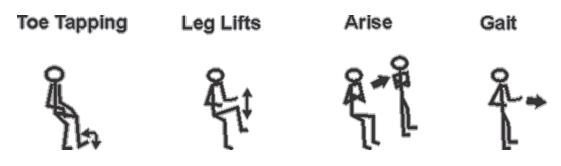
Kinesia Lower Extremity and Gait Evaluation

Published:

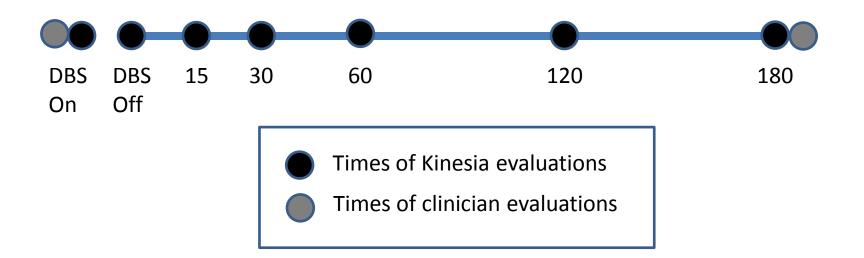
Heldman, D., Filipkowski, D. E., Riley, D. E., Whitney, C. M., Walter, B. L., Gunzler, S. a, Giuffrida, J.P. & Mera, T (2012). Automated motion sensor quantification of gait and lower extremity bradykinesia. International conference of the IEEE EMBS. 2012.

Kinesia Sensor Placement

• Sensors placed on the more affected thigh, back and top of feet.



Protocol


- Individuals with Parkinson's Disease and DBS — Started off medication and with DBS on
- Kinesia Evaluation: Unified Parkinson's Disease Rating Scale tasks

Protocol

- Clinician UPDRS at study start DBS on and 3 hours after DBS off
- 2 Kinesia evaluations at each time point

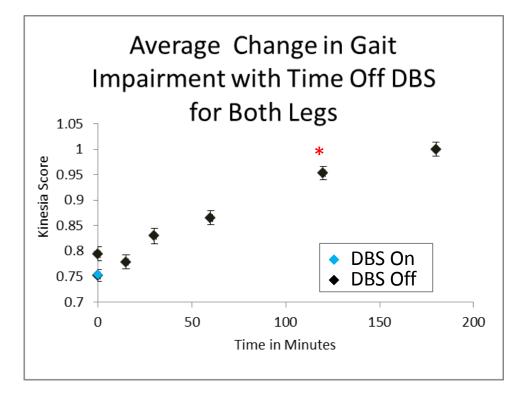
Time After DBS Was Turned Off In Minutes

Study Goals

- Evaluate changes in impairment over time
- Evaluate ability to minimize sensor number to reduce user burden
 - Sensors data from both legs
 - Sensor data from just the subject reported more affected limb

Results

- 8 Individuals with Parkinson's Disease
- STN DBS implanted
- DBS surgery average of 1.8 ± 2.3 years prior
- Average of 14 ± 1.5 hours off medication

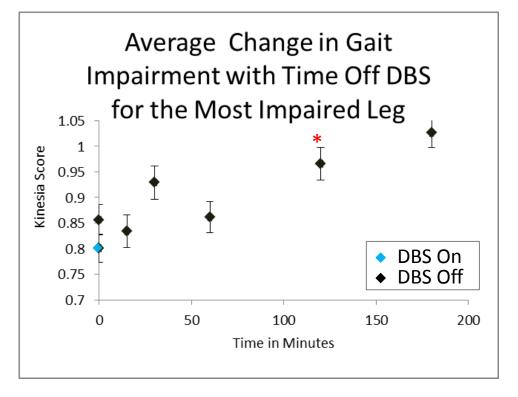

Overall Effect of DBS Cessation

		Average Kinesia Score	Average Clinician Score
Gait	DBS on	0.77 ± 0.38	0.5 ± 0.53
	DBS off 3 hr	1.00 ± 0.45	0.88 ± 0.99
P value		0.001 *	0.28
Toe Taps			
	DBS on	2.19 ± 0.57	1.63 ± 0.92
	DBS off 3 hr	2.58 ± 0.49	2.38 ± 1.06
P value		<0.0001*	0.02*
Leg Lifts			
	DBS on	1.67 ± 0.76	0.57 ± 0.53
	DBS off 3 hr	2.54 ± 0.94	2 ± 0.58
P value		<0.0001*	0.003*

Effect of DBS Cessation Over Time Gait

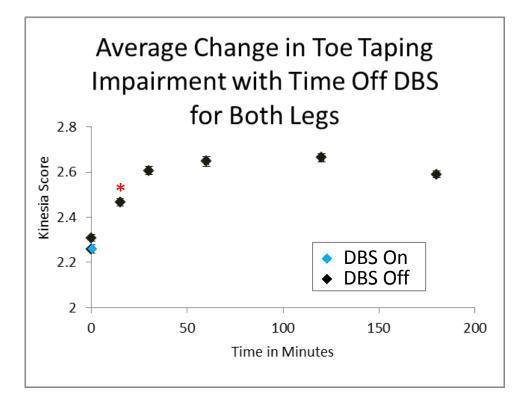
<u>Both Legs</u> Paired t-tests - DBS On to 120 min (p=0.002) - 120 to180 min

(p=0.53)

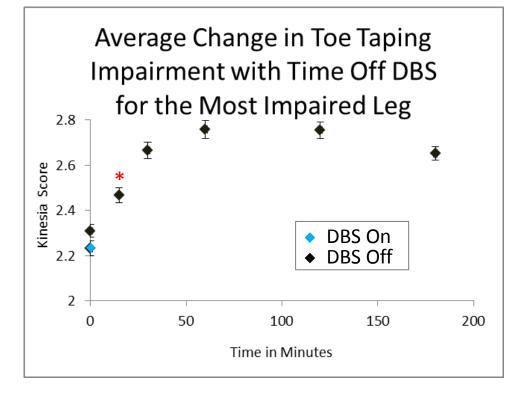


Effect of DBS Cessation Over Time Gait

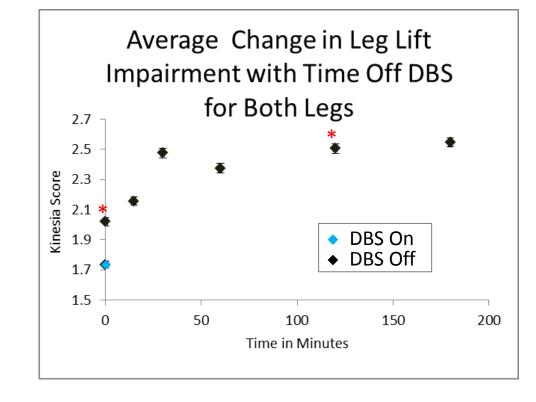
More Impaired Leg


Paired t-tests

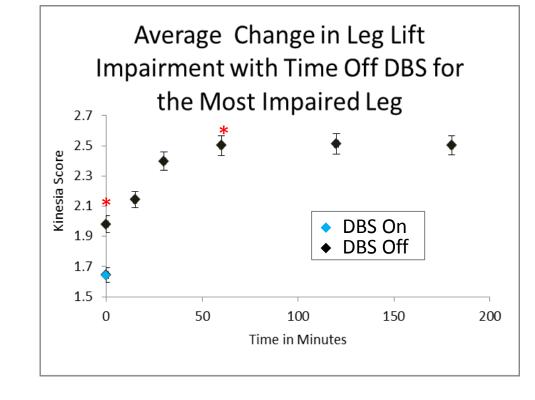
- DBS On to 120 min (p=0.04)
- 120 to 180 min (p=0.25)


Effect of DBS Cessation Over Time Toe Tapping

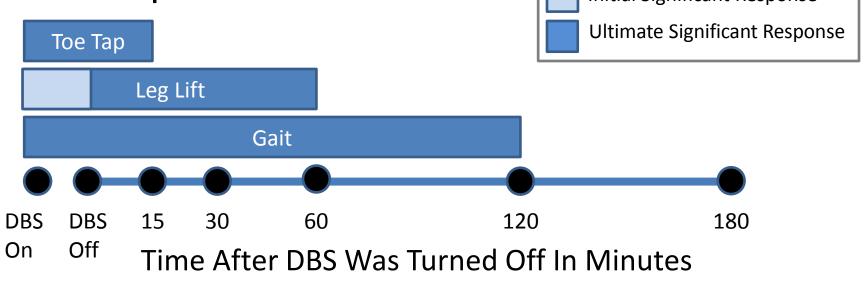
Both Legs Paired t-tests - DBS On to 15 min (p=0.016) - 15 to 180 min (p=0.1)


Effect of DBS Cessation Over Time Toe Tapping

More Impaired Leg Paired t-tests - DBS On to 15 min (p=0.02) - 15 to 180 min (p=0.13)


Effect of DBS Cessation Over Time Leg Lifts

Both Legs Paired t-test - DBS On to Off (p=0.002)- Off to 120 min (p<0.001) - 120 to 180 min (p=0.4)


Effect of DBS Cessation Over Time Leg Lifts

More Impaired Leg Paired t-test - DBS On to Off (p=0.007) - Off to 60 min (p<0.001) - 60 to 180 min (p=0.99)

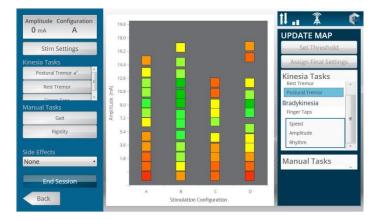
Summary of DBS Cessation

- Increase in impairment after off 3 hour with DBS off
 - Except clinician gait score
- Different movements showed very different time response.

Limitations

- Small sample size (study is ongoing)
- DBS cessation as a model for change in DBS settings

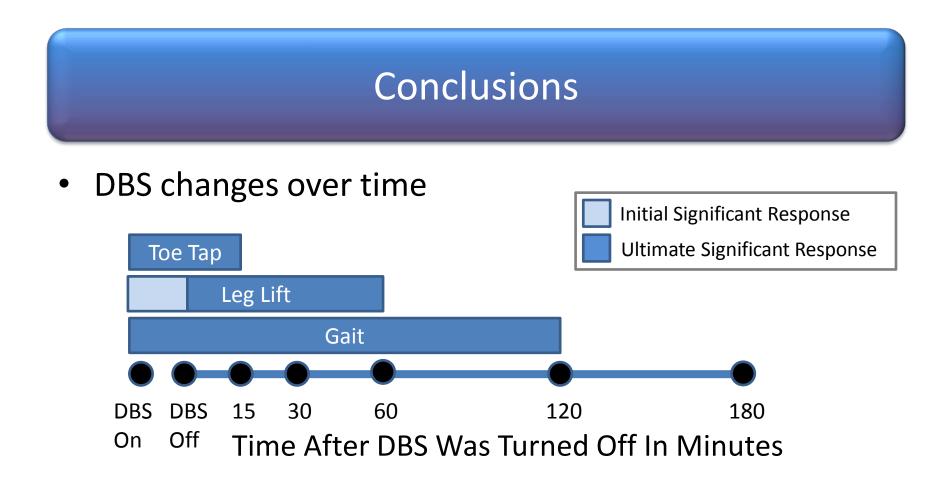
Role of the Kinesia Systems



Kinesia

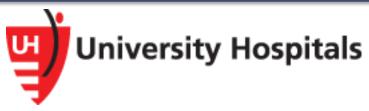
Tune DBS settings in the clinic

Independent home assessments



Kinesia for DBS

- Integrate remote evaluation and DBS tuning
 - This will improve knowledge of DBS effects
 - Allow for tuning of gait parameters



- Kinesia system
 - High resolution quantitative evaluation
 - Not limited to use in the clinic
 - Integration of Kinesia and DBS tuning could improve gait outcomes

Acknowledgements

- Thomas Mera
- Dustin Heldman
- Joseph Giuffrida

- David Riley
- Benjamin Walter
- Steven Gunzler

- Alberto Espay
- Fredy Revilla

Funding from NIH National Institute on Aging 2R44AG033947-03A1

For more information contact:

Elizabeth Brokaw Ebrokaw@glneurotech.com