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Upper-Extremity Stroke Therapy Task Discrimination
Using Motion Sensors and Electromyography

Joseph P. Giuffrida, Member, IEEE, Alan Lerner, Richard Steiner, and Janis Daly

Abstract—Brain injury resulting from stroke often causes
upper-extremity motor deficits that limit activities of daily living.
Several therapies being developed for motor rehabilitation after
stroke focus on increasing time spent using the extremity to pro-
mote motor relearning. Providing a novel system for user-worn
therapy may increase the amount and rate of functional motor
recovery. A user-worn system comprising accelerometers, gyro-
scopes, and electromyography amplifiers was used to wirelessly
transmit motion and muscle activity from normal and stroke
subjects to a computer as they completed five upper-extremity
rehabilitation tasks. An algorithm was developed to automatically
detect the therapy task a subject performed based on the gyro-
scope and electromyography data. The system classified which
task a subject was attempting to perform with greater than 80%
accuracy despite the fact that those with severe impairment pro-
duced movements that did not resemble the goal tasks and were
visually indistinguishable from different tasks. This developed
system could potentially be used for home-therapy compliance
monitoring, real-time patient feedback and to control therapy
interventions.

Index Terms—Accelerometers, electromyography, gyroscopes,
rehabilitation, stroke.

I. INTRODUCTION

STROKE refers to sudden onset of weakness or other neu-
rological symptoms as a result of injury to a blood vessel

in the brain [1]. Two types of cerebral vascular accident are
hemorrhagic and ischemic. The overall effect is dependent upon
brain side damaged, infarct location, infarct size, character of
blood vessels and collateral circulation, and recovery of tissue
involved. Stroke is a leading cause of serious long-term dis-
ability in the United States [2]. Prevalence is about 5 700 000
with about 700 000 people suffering a new or recurrent stroke
each year. More than 1 100 000 American stroke survivors have
functional limitations and difficulty with activities of daily
living. Young stroke survivors may expect to live a long life and
elderly patients have survived for longer than seven or eight
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years after a stroke. This illustrates the need for effective motor
therapy techniques after stroke.

Almost every patient that experiences a cerebral or brain stem
stroke develops a physical disability that affects activities of
daily living including eating, dressing, and personal hygiene [1].
Limiting these tasks greatly reduces independence, societal par-
ticipation, and quality of life. Cerebral hemisphere strokes gen-
erally affect motor function with a common impairment being
loss of motor control of the contralateral upper extremity. Upper
extremity motor deficits may include paralysis or weakness,
abnormal muscle tone, abnormal posture, abnormal movement
synergies, and coordination loss [3]. As time progresses, pa-
tients can regain some motor function originally lost. It was
thought that dynamic recovery only occurred up to six months
poststroke, but new therapies are illustrating that motor recovery
can continue after that [4]–[6].

One stroke rehabilitation method is compensation techniques
using nonparetic limbs to complete functional tasks. While this
can improve some independence measures, it can also lead to
learned disuse of the paretic limb and limit functional recovery.
The adult cerebral cortex is capable of significant functional
plasticity and postinjury behavioral experience modulates
neurophysiologic and neuroanatomical changes in undamaged
tissue [3], [7]. Occupational and physical therapy contribute to
functional recovery of patients suffering from central paresis
of the upper-extremity [8]. Motor rehabilitation after stoke
has been shown to be efficacious in both acute and chronic
stages. Previous research indicates that repetitive motor activity
provides the basis for motor learning and functional recovery
[8]. Repetitive, volitionally executed movement, or repetitive
sensorimotor training is of great benefit in terms of functional
outcomes for centrally paretic arm and hand [9], [10]. Methods
that rehabilitation therapists effectively use to stimulate func-
tional plasticity and motor recovery include active and passive
range-of-motion, bilateral training, forced use, robotic-assisted
therapy, and constraint induced therapy [11]–[15].

Repetitive training of both simple, isolated, single joint
movements, and complex tasks have been shown to improve
upper-extremity motor recovery after stroke [10], [16], [17].
Grip strength, an important variable for activities of daily
living [18], can also be significantly improved by this type of
training. The repetitive execution of complex motor movements
accelerates the time course and supports functional recovery.
Relationships have been demonstrated between the amount of
time a patient practices use with the paretic limb and the amount
of motor recovery he or she achieves. Increasing the amount of
time as well as using task specific methods to encourage motor
learning helps improve function and can reduce long-term
disability [17], [19], [20]–[22].
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A current trend in therapy relies less on one-to-one activities
and instead makes use of technological advances including
interactive computerized systems that increase time spent in
active practice [23]. Therefore, the development of a system
that a person who suffered a stroke can easily and effectively
utilize at home to continue upper-extremity therapy outside
the clinic should provide benefit. To be effective, a user-worn
system should provide real-time feedback to encourage the
subject as well as document and report progress and compliance
to a clinician. Therefore, as a first step, a home-therapy system
should integrate hardware and software to automatically detect
the therapy tasks a stroke patient is performing. One potential
method is to monitor upper-extremity motion and electromyo-
graphy (EMG) during patient therapy activities. A candidate
for this system would need a minimum of grade 2/5 strength
(Medical Research Council) in shoulder flexion and abduction.
However, the system could also be effective in patients ranging
to strong shoulder and elbow control, but limited hand function.
Essentially, there must be at least a few upper-extremity or
shoulder muscles retaining enough function to generate motion
or EMG.

Specific patterns and coordination of muscle activity have
been demonstrated [24], [25]. As a subject who suffered a stroke
attempts to perform repetitive movement tasks with their paretic
limb, we aimed to classify the task he or she was attempting
based on arm motion and/or EMG recordings from nonpara-
lyzed muscles even though for severe impairment the produced
motion may not closely approximate the goal task. Neural net-
works employing upper-extremity and shoulder EMG have suc-
cessfully detected shoulder and elbow angles [26] and classi-
fied movement types [27]–[29]. EMG features have been input
to standard backpropagation neural networks, clustering algo-
rithms, and self-organizing maps to classify movement. EMG
features used include discrete time intervals of integral absolute
value, difference absolute mean, variance, and autoregressive
model coefficients [27], [29]. EMG can also provide real-time
feedback to patients which has been useful when combined in a
comprehensive treatment program to regain arm function after
stroke [28]–[31]. Kinetic sensors have also been used exten-
sively to quantify and classify motion in movement disorders
[32]–[35]. Current micro-electrical-mechanical (MEMS) tech-
nology provides miniaturized accelerometers and gyroscopes to
measure motion.

The aim of this study was to design, implement, and evaluate
a prototype hardware system and algorithm to input motion and
EMG data from a stroke subject during therapy and correctly
discriminate the upper-extremity task attempted or performed.
Subjects were instrumented with motion and EMG data col-
lection instrumentation while they performed a subset of their
normal in clinic therapy tasks. Data was collected, processed,
and used to develop and test algorithms for upper-extremity
stroke therapy task discrimination.

II. METHODS

A. Subject Selection

Clinical trials were completed either at CleveMed or at a sub-
ject’s home. The study was conducted under an approved Insti-
tutional Review Board protocol and each subject provided in-

Fig. 1. Each subject was setup with six KinetiSense motion and EMG capture
systems consisting of a sensor unit and command module connected by a thin
cable.

formed consent. Clinical trials were completed with 13 subjects
including eight persons without neurological impairments (N)
and five persons diagnosed with stroke (S). A clinician screened
potential subjects diagnosed with a stroke to ensure no cogni-
tive impairments would prohibit understanding instructions and
that subjects could effectively communicate to indicate they un-
derstood upper extremity task instructions required for the clin-
ical study. Ensuring task comprehension was important since a
major study goal was to detect a particular upper extremity task
a subject was attempting even if the arm motion did not match
the goal.

All subjects diagnosed as having a stroke had some upper-ex-
tremity impairment. To document feasibility across a wide
ranging degree of motor impairment, we recruited five subjects
diagnosed as having had a stroke with varying degrees of upper
extremity motor impairment. S1 was six months poststroke
with good shoulder control, good elbow control, good wrist,
but lacked fine finger control. S2 was two years poststroke with
limited shoulder, limited elbow, limited wrist, and no hand
control. S3 was one year poststroke with good shoulder, limited
elbow, limited wrist, and no hand control. S4 was one year
poststroke with limited shoulder, no elbow, no wrist, and no
hand control. Finally, S5 was two years poststroke with good
shoulder, limited elbow, limited wrist, and no hand control.
We evaluated one arm in each subject. For stroke subjects, the
affected side was evaluated. For subjects without neurological
impairment, the side was randomly selected.

B. Experimental Setup

A 3-D motion and EMG sensing unit (KinetiSense,
CleveMed, Cleveland, OH) was used to obtain data from
each subject. Each unit consisted of two parts including a
sensor unit and command module. The sensor unit consisted
of a small, lightweight plastic enclosure that housed a flex
circuit with three orthogonal MEMS accelerometers and three
orthogonal MEMS gyroscopes. The sensor module was con-
nected to a command module with a thin cable. The command
module supplied power, transmitted data via a wireless link,
and amplified and acquired two EMG channels. An embedded
Bluetooth radio wirelessly transmitted data to a base station
computer approximately 20 ft away.

Each subject was set up with six KinetiSense sensor units on
the skin using double-sided tape (Fig. 1). Specifically, sensor
units were placed on the dorsal aspect of the middle finger, the
dorsal aspect of the hand, the dorsal aspect of the forearm, the
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TABLE I
RECORDED UPPER EXTREMITY AND SHOULDER MUSCLES

lateral aspect of the upper arm, the top of the shoulder, and on the
waist. The six corresponding command modules were clipped
onto an elastic belt worn around the subject’s waist. Twelve
channels of EMG (Table I) were recorded using the two channel
EMG input connector on each of the six command modules. A
pair of surface recording electrodes (MVAP Electrode, Newbury
Park, CA) with snap connectors was placed over each muscle
[36] and a ground electrode over the elbow.

C. Data Collection

A subset of upper-extremity therapy exercises normally com-
pleted in the clinic and that could be completed by stroke sub-
jects with a wide range of impairments was selected. A total of
five tasks were selected and are described below. One data col-
lection trial consisted of five repetitions of the selected task. For
each of the tasks below, the requested initial orientation of the
forearm was neutral. However, the initial relaxed forearm ori-
entation of stroke subjects varied as a function of spasticity.

• Task A) Finger and Wrist Extension: The subject began
with the hand and forearm in a relaxed position resting on
a table in front of the body. The subject then attempted
simultaneous fingers and wrist extension with as large an
excursion as possible, maintained the posture for a few sec-
onds, and then returned to the original position.

• Task B) Wrist Extension and Finger Flexion: The subject
began with the hand and forearm in a relaxed position on
a table in front of the body. The subject then attempted
to extend the wrist and at the same time flex the fingers,
maintain the position for a few seconds, and then return to
a relaxed position.

• Task C) Arm Sawing Motion: This task was supported or
unsupported depending upon subject impairment level.
Supported: The subject began with the hand resting near
the edge of a table in front the body. The subject then at-
tempted to slide the hand in a straight line on the table away
from the body as far as he or she could and then slide the
hand back to the body along the same line.
Unsupported: The subject began with the hand at chest
height directly in front of the body. The subject then at-
tempted to move the hand in a straight line through space
away from the body as far as he or she could and then move
the hand back to the body along the same line.

• Task D) Forearm Supination and Wrist Deviation: Forearm
Supination and Wrist Deviation The subject began with

the hand and forearm in a relaxed position on a table in
front of the body. The subject then attempted to supinate
the forearm and radially deviate the wrist with as large an
excursion as possible, maintain it for a few seconds, and
return to a relaxed position

• Task E) Forearm Pronation and Wrist Deviation: The sub-
ject began with the hand and forearm in a relaxed position
on a table in front of the body. The subject then attempted
to pronate the forearm and radially deviate the wrist with
as large an excursion as possible, maintain it for a few sec-
onds, and return to a relaxed position.

Subjects received verbal instructions and a visual demonstra-
tion of each of the five therapy tasks. The goal was to complete
ten trials of each task. However, due to time constraints and sub-
ject comfort, a few subjects completed less than 50 trials with a
minimum of five trials of each task. Therapy task order was ran-
domized and subjects were not given a practice session. The first
attempt of the task was included in data collected for analysis.
Practice sessions were purposely excluded because one goal was
to produce a system that could be quickly trained to recognize
subject therapy exercises. Collecting data without practice ses-
sions was expected to produce a worst-case scenario to validate
algorithm development.

While subjects performed each task, the KinetiSense com-
mand modules sampled and digitized upper-extremity motion
and EMG data. Kinetic data, including three channels of linear
acceleration from accelerometers and three channels of angular
velocity from gyroscopes from each sensor module, were sam-
pled at 128 Hz. EMG was sampled at 2048 Hz, low pass filtered
with a cutoff of 1024 Hz, and then root mean square (rms) pro-
cessed in discrete bins of approximately 7.8 ms so that both the
raw kinetic sensor and processed EMG data were collected at
the same 128 Hz rate. The accelerometer, gyroscope and rms
EMG were then transmitted in a data packet from the command
modules over the wireless network to a USB Bluetooth adapter
located on the base station computer. Data was stored on the
base station computer for offline analysis.

D. Task Discrimination Algorithm Development

Automated task discrimination algorithms for each subject
were developed using different combinations of EMG, ac-
celerometer, and/or gyroscope inputs. Several important system
constraints were taken into account during development. First,
one extremely important difference in subjects diagnosed with
stroke compared to subjects without neurological impairment
was that it was not only important to detect when they “were”
performing a task, but also when they were “attempting” to
perform a task. For example, someone who could not yet move
their wrist joint may have produced repeatable patterns in
elbow muscles as they were “attempting” to move their wrist.
Second, different subjects diagnosed with stroke had different
degrees of motor impairment and coordination patterns based
on their specific injury. Therefore, large variations in coordi-
nated muscle activity existed between subjects for the same
therapy task as well as some variation within a single subject.
It would not be reasonable to have assumed that a single hard
coded algorithm could distinguish tasks among every potential
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Fig. 2. Block diagram of the EMG signal processing algorithm to provide inputs for the K-means clustering algorithm.

subject. Because of this, the goal was to implement an algo-
rithm structure that could be quickly trained in a clinician’s
office while the subject completes therapy tasks as part of their
normal visit. Additionally, it is important to remember that a
future goal is to improve motor control over time. Therefore,
as a subject would use the system more and more, coordination
patterns of motion and EMG should continue to change, albeit
slowly. The algorithm structure should be capable of adaptive
learning over time while the subject’s motor function improves.
Finally, the algorithm should take advantage of the fact that
many therapy exercises are repetitive motions. These repetitive
motions should produce specific patterns in a subset of the
signals being recorded.

Based on these constraints, development began with a simple
K-means clustering algorithm. The K-means algorithm pro-
vided many advantages including fast training and the ability
to continue to add new data over time for adaptive learning. In
general, the K-means algorithm defines a set of cluster centers
of -dimensions where is the number of quantitative input
features used to describe a task trial. Since five tasks were used
in the therapy exercise set, the K-means algorithm included
five cluster centers. Once the cluster centers were defined, the

quantitative features of a single trial were compared to each
of the cluster centers. The Euclidean distance of all quantitative
features was calculated to each cluster center. The task trial was
then assigned to the cluster center with the closest Euclidean
distance. That cluster center was then updated to reflect the
additional value.

Therefore, quantitative input features were extracted for each
task trial. These inputs were expected to capture repeatable pat-
terns generated by subjects during tasks. More specifically, the
input features were required to be a function of repeatable re-
lationships that existed between the motion of different limb
segments or EMG channels during a specific task. Addition-
ally, relationships were not be penalized for being small, i.e.,
weak muscles or small amplitude movements. Furthermore, the
algorithm was expected to produce good results regardless of
task speed. Finally, the need to normalize EMG signals to a
global maximum and minimum was removed to simplify setup
and avoid calibration before each use. As described earlier, 48
channels of data at 128 Hz were collected for each trial. This
included 12 channels of processed rms EMG, 18 channels of
linear acceleration from accelerometers and 18 channels of an-

gular velocity from gyroscopes. Based on the above criteria, the
following quantitative feature inputs were extracted.

We first attempted to use only EMG for task discrimination,
as this would minimize the requirements to power electro-
mechanical transducers and reduce system cost and size. Each
channel of rms EMG was moving window averaged using a
window size of 30 data points and then independently normal-
ized to a zero mean and standard deviation of one (Fig. 2).
In other words, normalization for a particular data channel
and trial depended only on that channel and trial. Next, every
combination of 2 out of the 12 processed EMG channels was
multiplied together on a point-by-point basis to create a new
vector of the same length. That new vector was then summed
to create a single value for the K-means input. Since there are a
total of 66 combinations of 2 out of 12 EMGs, each trial had an
input pattern vector of 66 dimensions. The same procedure was
repeated for processing both the accelerometer and gyroscope
data.

E. Task Discrimination Algorithm Testing

Separate cluster algorithms were trained and tested for each
subject. We defined initial cluster centers for each task by cal-
culating the average of the dimension pattern vectors for a ran-
domly selected 80% of data collected for each task. This 80%
was known as the training set. After the five cluster centers were
calculated, we then reapplied each of the training set pattern
vectors and calculated to which of the five clusters they were as-
signed based on Euclidean distance from the cluster centers. Ad-
ditionally, we calculated to which cluster center the remaining
20% of the trials, or the generalization set, was assigned. A cor-
rect task classification means that the trial was assigned to the
correct cluster center. The percentage of correct task classifica-
tions was calculated by dividing the number of correct cluster
center assignments by the total number of trials. The percentage
of correct task classifications for both the training and general-
ization sets was calculated for each subject.

By early visual inspection we determined that sensor modules
located at the top of the shoulder and waist provided little added
information. Therefore, they were removed from the analysis.
Sensor modules on the finger, hand, forearm, and upper arm,
and all EMG channels were included in the analysis. The above
cluster algorithm analysis was completed with e ach of the seven
combinations of sensor input types: 1) only EMG, 2) only ac-



86 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 16, NO. 1, FEBRUARY 2008

celerometers, 3) only gyroscopes, 4) accelerometers and gyro-
scopes, 5) EMG and gyroscopes, 6) EMG and accelerometers,
and 7) EMG, accelerometers, and gyroscopes. The objective
was to determine which sensor combination provided the best
information. Using S-Plus 2000 statistical software, we com-
pleted an analysis of variance (ANOVA) using the dependent
variable of percent correct classifications and the independent
variables of subject population (stroke or normal), therapy task
and sensor type combination.

III. RESULTS

All subjects were able to elicit some type of movement pat-
tern during the therapy tasks even if they did not match the goal
therapy task and the movements were visually indistinguishable
from attempts at different tasks. This provided motion and EMG
inputs for the automated task discrimination algorithm. Two im-
portant questions were answered during algorithm development
and testing. First, what was the minimum combination of sensor
types required for accurate detection? Removing redundant or
nonsignificant sensors would reduce size, power consumption,
and cost. And second, what was the accuracy of therapy task
classification that could be achieved using that combination of
sensor inputs?

A. Subject Task Completion

All normal subjects were able to successfully complete the set
of five therapy tasks. Stroke subjects had mixed results. Those
that were less impaired were able to successfully complete all
tasks. Those with greater impairment had less success com-
pleting the tasks. Nevertheless, all stroke subjects elicited mo-
tion and EMG from some part of the upper-extremity while at-
tempting to complete the correct pattern of movement. There-
fore, while the movement did not closely approximate the goal
in some cases, motion and EMG were successfully recorded
(Figs. 3–5).

B. Sensor Reduction Analysis

The trained algorithms structures allowed generalization of
features to produce accurate task discrimination. When all col-
lected data (EMG, accelerometers, and gyroscopes) was used
in the ANOVA computation, sensor combination, subject pop-
ulation, and therapy task all were significant input variables.
The grand means of task discrimination accuracy for popula-
tion were 89.61% for normals and 82.27% for stroke indicating
the algorithms worked slightly better for normals, which should
be expected. The grand means for different sensor combinations
are shown (Table II). While EMG alone produced the worst ac-
curacy at 78.25%, it was important to retain EMG as in input pa-
rameter since it also reveals important information about motor
recovery and is extremely useful as a real-time feedback mech-
anism to isolate single muscle activity. Therefore, at least one of
the additional sensor types needed to be added to improve accu-
racy. Sensor combination was a significant variable
when all sensor combination inputs were used in the ANOVA.
However, when all trials using EMG alone were removed from
the ANOVA, sensor combination was not a significant variable

. This revealed that task discrimination using only
cEMG can be improved by adding at least one of the other sensor

Fig. 3. The rms processed and moving window averaged EMG for subject
N1 is shown for six channels including ECU, FD, ECR, palmaris longus (PL),
pronator teres (PT), and extensor digitorum (ED). Two separate tasks are illus-
trated including Task A-Finger and wrist extension and Task B-Finger flexion
with wrist extension.

Fig. 4. Moving window averaged angular velocity for subject N1 is shown for
each gyroscope axis of the sensor unit worn on the hand and finger. Two sepa-
rate tasks are illustrated including Task A-Finger and wrist extension and Task
B-Finger flexion with wrist extension.

options, accelerometers or gyroscopes. Adding both types of
sensors to the task discrimination algorithm does not provide
any further significance than only one. Gyroscopes were chosen
over accelerometers since they act independently of gravity and
can more easily be used to calculate angular range of motion
and quantify other therapy parameters.

C. Task Discrimination Accuracy

The system accurately classified therapy tasks using the com-
bination of 12 channels of EMG and 12 gyroscope inputs from
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Fig. 5. Moving window averaged linear acceleration for subject N1 is shown
for each accelerometer axis of the sensor unit worn on the hand and finger. Two
separate tasks are illustrated including Task A-Finger and wrist extension and
Task B-Finger flexion with wrist extension.

TABLE II
GRAND MEANS CALCULATED FOR ALL SENSOR INPUT COMBINATION TYPES

DURING AN ANOVA

Fig. 6. Percent correct task classification for each task (A, B, C, D, E) is aver-
aged over each subject. Data is separated by normals or stroke and training or
generalization results.

four sensor units (each with three orthogonal gyroscopes) on the
finger, hand, forearm, and upper arm. Results are shown for sep-
arate therapy tasks across all subjects (Fig. 6) and for separate
subjects across all therapy tasks (Fig. 7). The trained algorithm
structure accurately classified therapy task trials that were a part
of the training set and also generalized to accurately classify the
set of generalization data. All but one (Task D of the generaliza-
tion set in stroke subjects) showed at least 80% accuracy. The

Fig. 7. Percent correct task classification for each subject is averaged over
every task for that subject.

large standard deviations in some of the generalization results
are due to the limited number of trials. The system accurately
classified which task a subject was attempting to perform de-
spite the fact that those with severe impairment produced move-
ments that did not resemble the goal tasks and were visually in-
distinguishable from other tasks.

IV. DISCUSSION

A hardware technology platform consisting of accelerome-
ters, gyroscopes, and electromyography was implemented to
transmit data over a wireless network to a base station com-
puter. Multiple motion sensor outputs and multichannel EMG
data were collected from the upper-extremity as normal and
stroke subjects completed a set of five upper-extremity stroke
therapy tasks. The collected data was used to successfully train
algorithms to accurately classify the therapy task being com-
pleted by the subject.

A. Task Discrimination Accuracy and Sensor Selection

The results represent an important first step in the develop-
ment of a user-worn system for upper-extremity motor rehabili-
tation after stroke. The compact, wireless, prototype system ac-
curately classified the therapy task not only when a normal or
slightly impaired subject was “completing” the therapy task, but
also when a stroke subject with severe impairment was only “at-
tempting” to complete the goal task. The accuracy rates above
80% for all but one data point should be considered good in light
of the fact that subjects were not allowed to practice tasks be-
fore data collection and the limited number of trials collected.
Allowing a subject to practice and collecting more data should
produce even more repeatable patterns and further improve ac-
curacy results. Furthermore, it is important to note that during
therapy sessions subjects should not continually produce ab-
normal movements or movements with other parts of the body
such as the trunk to mimic the desired motion of the upper ex-
tremity. However, for subjects that are severely impaired, these
may initially be the only signals available to indicate the actual
task a subject is trying to complete. Once the desired task is
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detected, interventions such as functional electrical stimulation
(FES) described below, may be incorporated into the system to
reinforce correct motor patterns and assist with the task during
therapy.

One important goal of this initial study was to determine the
appropriate sensor types to use for correct classification and fur-
ther system hardware development. Electromyography is an im-
portant parameter to monitor for home-therapy applications as it
provides insight into individual muscle recovery and is an effec-
tive tool for real-time display feedback during therapy. There-
fore, EMG was included as an input sensor. However, normal-
ization is typically a problematic issue in EMG applications es-
pecially in the home environment. Normalizing each channel of
data to a zero mean and standard deviation of one based only
on the current trial solved this issue and did not penalize muscle
activity for being of small amplitude compared to other stronger
muscles. Additionally, it alleviated the need for a calibration
routine. The combination of EMG and gyroscope data provided
sufficient information to accurately detect the therapy task being
completed. Gyroscopes were selected over accelerometers since
simpler signal processing techniques can be applied to gyro-
scope data to determine parameters such as range-of-motion
during the repetitive therapy tasks. The accelerometers did not
add significant value to the task discrimination scheme and re-
moving them will reduce size, cost, and power consumption.

Finally, the processing technique of multiplying each EMG
channel by the other EMG channels and each angular velocity
input vector by the other angular velocity vectors on a point by
point basis to create a new vector related to the coordination
patterns between EMG or angular velocity proved valuable. For
example, Fig. 3 illustrates that extensor carpi ulnaris (ECU) and
extensor carpi radialis (ECR) act as agonists in both Task A and
Task B. However, ECU and flexor digitorum (FD) act differently
depending on the Task. During Task A they act out of phase with
each other while in Task B they act in phase with each other. The
sum of this new vector created by multiplying different EMG or
motion channels together described if muscles or limb segments
acted agonistically or antagonistically during a therapy task. If
muscles or limb segments acted as agonists it would produce
very large positive numbers when the new vector was summed.
If they were acting as antagonists, it would produce very large
negative numbers. When there was little positive or negative cor-
relation between the muscles it would produce numbers closer
to zero. These single value inputs (Fig. 2) describing the coordi-
nation patterns between muscles or motion provided significant
information for accurate task classification.

B. Sensor Reduction Analysis

A home-therapy system must be able to accurately classify
the therapy task a subject is performing to provide feedback,
monitor compliance, and allow the possibility for intervention.
For example, correct classification allows effective real-time
feedback to a subject to encourage them or provide information
about repetitions and/or task time remaining as they complete
therapy tasks. The system needs to have accurate task classifi-
cation or a subject may become frustrated with incorrect feed-
back.

While we were able to accurately detect what task a subject
was attempting, some stroke subjects could not accurately com-
plete the requested tasks due to muscles weak or paralyzed from
the stroke. Functional electrical stimulation (FES) can be used
to integrate weak or paralyzed muscles into therapy. It has been
established that repetitive motor activation of both simple and
complex movements improves the rate and amount of functional
recovery in stroke patients. Additionally, FES has been shown to
improve functional outcomes during therapy. Therefore, since
we have demonstrated the ability to accurately detect a task a
subject is performing, we could potentially intervene with FES
to the appropriate muscles to assist the therapy task. FES is ad-
vantageous compared to other stroke therapies since it is non-
invasive with minimal side effects [37]–[46]. FES electrically
stimulates muscles to create a contraction. Some post stroke pa-
tients have paralyzed muscles while others have weak muscles
that are overpowered by spasticity of an opposing muscle group.
Therefore, a muscle normally required for a therapy task, but in-
active due to stroke could potentially be included during therapy
using FES. By accurately detecting the task a subject is per-
forming, FES could be applied to specific target muscles during
their therapy task attempts to improve motor performance. Ad-
ditionally, utilizing FES at the sensory level helps the user lo-
calize muscles they are trying to use for a particular therapy task.
Sensory stimulation in conjunction with physiotherapy may im-
prove motor skills. Providing feedback from the subject’s own
movements facilitates motor learning and may drive cortical re-
organization.

Home rehabilitation has shown effectiveness in stroke pa-
tients [5], [47]–[49]. However, important factors that should be
considered when developing a system for at home therapy in-
clude patient compliance time and ease of use. First, home re-
habilitation should be provided with the same or greater inten-
sity as inpatient treatment [50]. Therefore, a system designed
for home use should encourage patients to complete therapy at
home. A first step toward that end was achieved in this work
by accurately classifying therapy tasks through EMG and mo-
tion sensors. The future envisioned system will use EMG, mo-
tion, and task classification to control graphical real-time feed-
back and video games to encourage patient use. Furthermore,
the envisioned system will provide easy use by upgrading the
hardware technology platform into an integrated sleeve-worn
system easily donned by subjects at home. We plan to inte-
grate the five KinetiSense systems and an FES device into a
single unit to provide a complete, clinically deployable system
for home therapy. Blanking will be an important feature in the
next generation system to avoid stimulation artifact from con-
taminating the EMG. A sleeve-worn design should minimize
problems with repeatable sensor and electrode placement that
could cause cross talk from other muscles and produce errors in
trained task recognition algorithms. Furthermore, a sleeve em-
bedded with the motion sensors and labeled with appropriate
pockets for electrode placement should simplify home setup for
users and his or her caregivers. A system that allows subjects
to continue therapy outside the clinic and monitors compliance
should further improve functional recovery by increasing time
spent in therapy. Providing multimodal inputs to the subject
during therapy such as real-time visual feedback and sensory in-
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puts from FES driven muscles actuated by muscle coordination
patterns may help drive cortical reorganization, increase motor
function and improve quality of life.
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