Logarithmic relationship between head tremor and 5-point tremor rating
Rodger Elble, MD, PhD1,2, Helge Hellriegel, MD2, Jan Raethjen, MD2 and Günther Deuschl, MD2
1Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, United States, 62704
2Department of Neurology, Christian-Albrechts-University, Kiel, Germany, 24105.

Objectives
1. To determine the mathematical relationship between the amplitude of head tremor and 5-point Fahn-Tolosa-Marin (FTM) clinical ratings.
2. To compare the head tremor-FTM relationship with previous estimates of the hand tremor-FTM relationship.

Background
The tremor rating scale (TRS) of Fahn, Tolosa and Marin is used commonly in the clinical assessment of tremor. We recently demonstrated that hand tremor (T), measured with a motion transducer, and TRS have the following logarithmic relationship: $\log T = \alpha \cdot TRS + \beta$

This relationship is predicted by the Weber-Fechner laws of psychophysics. We found that α is approximately 0.5 for log base 10.

We now report the relationship between head tremor and the FTM TRS.

Design/Methods
Four normal adults, 15 patients with tremulous cervical dystonia, two people with essential tremor, one patient with Parkinson disease and one with pure head tremor were studied after giving informed consent (N = 23).

Head tremor was recorded for one minute with a motion sensor mounted on the vertex of the head, and the x-y-z rotations of head tremor were derived from the triaxial gyroscope. The motion transducer contained a triaxial accelerometer and triaxial gyroscope (CleveMed Kinesia), which provided three-dimensional recordings of translational (linear) motion and rotational motion of the head during the recording, two movement disorders specialists rated head tremor with the FTM.

Tremor recordings were analyzed with the fast Fourier transform and with the Morlet wavelet transform to compute the mean and maximum tremor amplitudes over time. These methods produced virtually identical results, except that the wavelet method did a better job of computing time-frequency spectra. Therefore, the results reported here were computed with the wavelet method.

The x-y-z displacements of head tremor were computed from the triaxial accelerometer recording, and the x-y-z rotations of head tremor were derived from the triaxial gyroscope recording. The resultant $(\sqrt{x^2+y^2+z^2})$ mean and maximum tremor amplitudes were subsequently correlated with the FTM ratings.

Results
Mean and maximum tremor displacement and rotation (T) had a logarithmic relationship with tremor ratings (TRS).

The correlation for mean displacement was less ($r = 0.643, p = 0.002$) than the correlation for mean rotation ($r = 0.869, p < 0.0001$). The slope α was 0.369 for displacement and 0.306 for rotation, and β for these measures was -1.370 and -1.204 (Figure 2).

Discussion
The gyrocopic measure of tremor (rotation) correlated better with clinical ratings of head tremor than did accelerometry (translation). This result is predictable because nearly all head tremor is rotational motion, not translation. In rotational motion, there is considerable gravitational artifact in accelerometric recordings of body motion.

The Weber-Fechner (logarithmic) relationship for head tremor is very similar to that previously reported for upper limb tremor3 and this relationship can be used to estimate the actual tremor amplitudes associated with clinical ratings.

Mean and maximum tremor amplitudes did not differ significantly in their relationship with the clinical rating. Maximum tremor might be more important when there is intention tremor.

The Weber-Fechner relationship between tremor (measured with a motion transducer) and clinical ratings is a robust observation that has been documented for 11-point spiral ratings.4,5

Conclusions
1. Trivaxial gyroscope does a better job of measuring head tremor than triaxial accelerometer.
2. Trivaxial gyroscope and wavelet spectral analysis provide measures of mean and maximum rotational tremor that correlate strongly with 5-point clinical ratings, according to the Weber-Fechner relationship: $\log T = 0.3723 - 1$, which is similar to that observed for hand tremor and sphygmmography.

Acknowledgements: Supported by grants from the Spastic Research Foundation of Kwaoi International, Illinois-Eastern Iowa District and from the German Research Council (DFG 855).