

Automated, Computerized System For Simultaneous **Administration Of MSLT/MWT In Multiple Patients**

Craig Frederick, Mohammad Modarres-zadeh, Sarah Weimer, Xueyan Xu

CleveMed NeuroWave Inc., Cleveland, OH

INTRODUCTION

- The current standard objective clinical tests for assessing daytime sleepiness, multiple sleep latency test (MSLT), and maintenance of wakefulness test (MWT), are short-duration tests (~30 minutes each) that are repeated 4-5 times during the day in two-hour intervals.
- **MSLT/MWT** require elaborate technician involvement, such as performing live, real-time sleep staging, which usually prohibits a technician from performing MSLT on more than 2 patients per day and limits the accessibility and cost effectiveness of the tests.

CLINICAL TEST

- 8 normal subjects were recruited to participate in this study by taking one or two 30 minute naps during the daytime hours (between 10 am and 3:00 pm) while being monitored by the Crystal Monitor.
- These subjects were under the condition of mild/moderate prior night sleep restriction to increase the likelihood of obtaining sleep segments during the daytime nap.
- A total of 11 naps were recorded and scored by a registered PSG technologist according to standard R & K method.
- Sleep latency from the PSG technologist (R & K) and the novel algorithm were compared for agreement by correlation coefficient study and Bland-Altman Analysis.

Novel algorithms were developed for real-time automatic sleep staging which can facilitate administrating multiple MSLT/MWT tests at the same time.

To facilitate the monitoring of up to 4 MSLT/MWT tests simultaneously, we developed a technician workstation, which is comprised of a computer system, 4 PSG monitoring units (CleveMed Crystal Monitor), and a software package that incorporates the real-time automatic Wake-Sleep Tracking Index.

The detected sleep onset times of the two methods were within 30 seconds of each other in every subject with a very high correlation coefficient (0.998).

RESULTS

Test Output Examples

Sleep Latencies from the Algorithm and PSG Technicians (R & K) (correlation coefficient: 0.998)

Subject	Age	Sex	Naps	R & K Latency (Sec)	Algorithm Latency (Sec)	A (Sec)
1	22	Μ	Nap1	361	378	17
2	23	Μ	Nap1	421	404	-17
2	23	Μ	Nap2	1051	1078	27
3	28	Μ	Nap1	751	756	5
3	28	Μ	Nap2	361	357	-4
4	24	Μ	Nap1	391	379	-12
4	24	Μ	Nap2	751	761	10
5	21	F	Nap1	421	411	-10
6	18	F	Nap1	391	382	-9
7	20	Μ	Nap1	871	851	-20
8	19	Μ	Nap1	511	505	-6

- This system was then tested using a patient simulator, which outputs previously recorded data from actual patients during **MSLT** studies.
- The system was also evaluated in 8 normal volunteers who participated in one or two 30-minute naps during the daytime hours while being automatically monitored by the developed system.

Novel Algorithm for Wake Sleep Tracking

One channel of raw EEG data (Occipital) from 80 previously recorded MSLT studies were used to develop the algorithm for tracking wake-sleep transition.

Raw EEG from MSLT

Time-Frequency Spectrogram (STFT)

Wake-Sleep Tracking Index (WS)

Example of applying the algorithms (Spectogram, upper plot and Wake-Sleep Tracking Index, bottom plot) to a single EEG channel obtained during an MSLT nap. In the spectrogram, darker colors indicate higher relative powers. Higher values of Wake-Sleep Tracking Index indicate deeper sleep.

Bland-Altman Analysis of the agreement between the Algorithm and R & K Sleep onsets

- The sleep onset times detected by the algorithm were optimized and evaluated using the gold standard sleep onset time scored by a PSG technologist.
- To compare with R & K sleep onset, sleep onset was defined as when the Wake-Sleep Tracking Index crossed and stayed above the sleep threshold for at least 15 seconds.
- Through a systematic non-linear programming optimization approach, WS is capable of automatically determining sleep threshold in real time using a single EEG channel.
- A patient simulator was used to simulate MSLT data from recorded studies to test the real-time algorithm for sleep onset detection.

Comparison of the Algorithm Wake-Sleep Tracking Index (dashed line) with the sleep stages scored by a PSG technologist according to R & K (solid line). R & K method uses EEG/EOG/EMG for sleep staging while the automatic algorithm only uses a single channel of EEG. The R & K sleep onset time is defined as the first transition of wake to stage 1 sleep (361 sec after lights-out). Algorithm sleep onset time, which is based on crossing of the sleep threshold by the Wake-Sleep Tracking index, is at 357 sec after lights-out.

CONCLUSIONS

- The real-time sleep onset detection capability of the developed system performed very well in these limited sets of studies with normal volunteers.
- A software package is currently being finalized to "guide" a novice operator to easily perform up to 4 MSLT/MWT studies simultaneously.

Future studies are needed to validate the system in clinical settings.