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Upper-Extremity Stroke Therapy Task Discrimination
Using Motion Sensors and Electromyography

Joseph P. Giuffrida, Member, IEEE, Alan Lerner, Richard Steiner, and Janis Daly

Abstract—Brain injury resulting from stroke often causes
upper-extremity motor deficits that limit activities of daily living.
Several therapies being developed for motor rehabilitation after
stroke focus on increasing time spent using the extremity to pro-
mote motor relearning. Providing a novel system for user-worn
therapy may increase the amount and rate of functional motor
recovery. A user-worn system comprising accelerometers, gyro-
scopes, and electromyography amplifiers was used to wirelessly
transmit motion and muscle activity from normal and stroke
subjects to a computer as they completed five upper-extremity
rehabilitation tasks. An algorithm was developed to automatically
detect the therapy task a subject performed based on the gyro-
scope and electromyography data. The system classified which
task a subject was attempting to perform with greater than 80%
accuracy despite the fact that those with severe impairment pro-
duced movements that did not resemble the goal tasks and were
visually indistinguishable from different tasks. This developed
system could potentially be used for home-therapy compliance
monitoring, real-time patient feedback and to control therapy
interventions.

Index Terms—Accelerometers, electromyography, gyroscopes,
rehabilitation, stroke.

I. INTRODUCTION

S
TROKE refers to sudden onset of weakness or other neu-

rological symptoms as a result of injury to a blood vessel

in the brain [1]. Two types of cerebral vascular accident are

hemorrhagic and ischemic. The overall effect is dependent upon

brain side damaged, infarct location, infarct size, character of

blood vessels and collateral circulation, and recovery of tissue

involved. Stroke is a leading cause of serious long-term dis-

ability in the United States [2]. Prevalence is about 5 700 000

with about 700 000 people suffering a new or recurrent stroke

each year. More than 1 100 000 American stroke survivors have

functional limitations and difficulty with activities of daily

living. Young stroke survivors may expect to live a long life and

elderly patients have survived for longer than seven or eight
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years after a stroke. This illustrates the need for effective motor

therapy techniques after stroke.

Almost every patient that experiences a cerebral or brain stem

stroke develops a physical disability that affects activities of

daily living including eating, dressing, and personal hygiene [1].

Limiting these tasks greatly reduces independence, societal par-

ticipation, and quality of life. Cerebral hemisphere strokes gen-

erally affect motor function with a common impairment being

loss of motor control of the contralateral upper extremity. Upper

extremity motor deficits may include paralysis or weakness,

abnormal muscle tone, abnormal posture, abnormal movement

synergies, and coordination loss [3]. As time progresses, pa-

tients can regain some motor function originally lost. It was

thought that dynamic recovery only occurred up to six months

poststroke, but new therapies are illustrating that motor recovery

can continue after that [4]–[6].

One stroke rehabilitation method is compensation techniques

using nonparetic limbs to complete functional tasks. While this

can improve some independence measures, it can also lead to

learned disuse of the paretic limb and limit functional recovery.

The adult cerebral cortex is capable of significant functional

plasticity and postinjury behavioral experience modulates

neurophysiologic and neuroanatomical changes in undamaged

tissue [3], [7]. Occupational and physical therapy contribute to

functional recovery of patients suffering from central paresis

of the upper-extremity [8]. Motor rehabilitation after stoke

has been shown to be efficacious in both acute and chronic

stages. Previous research indicates that repetitive motor activity

provides the basis for motor learning and functional recovery

[8]. Repetitive, volitionally executed movement, or repetitive

sensorimotor training is of great benefit in terms of functional

outcomes for centrally paretic arm and hand [9], [10]. Methods

that rehabilitation therapists effectively use to stimulate func-

tional plasticity and motor recovery include active and passive

range-of-motion, bilateral training, forced use, robotic-assisted

therapy, and constraint induced therapy [11]–[15].

Repetitive training of both simple, isolated, single joint

movements, and complex tasks have been shown to improve

upper-extremity motor recovery after stroke [10], [16], [17].

Grip strength, an important variable for activities of daily

living [18], can also be significantly improved by this type of

training. The repetitive execution of complex motor movements

accelerates the time course and supports functional recovery.

Relationships have been demonstrated between the amount of

time a patient practices use with the paretic limb and the amount

of motor recovery he or she achieves. Increasing the amount of

time as well as using task specific methods to encourage motor

learning helps improve function and can reduce long-term

disability [17], [19], [20]–[22].
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A current trend in therapy relies less on one-to-one activities

and instead makes use of technological advances including

interactive computerized systems that increase time spent in

active practice [23]. Therefore, the development of a system

that a person who suffered a stroke can easily and effectively

utilize at home to continue upper-extremity therapy outside

the clinic should provide benefit. To be effective, a user-worn

system should provide real-time feedback to encourage the

subject as well as document and report progress and compliance

to a clinician. Therefore, as a first step, a home-therapy system

should integrate hardware and software to automatically detect

the therapy tasks a stroke patient is performing. One potential

method is to monitor upper-extremity motion and electromyo-

graphy (EMG) during patient therapy activities. A candidate

for this system would need a minimum of grade 2/5 strength

(Medical Research Council) in shoulder flexion and abduction.

However, the system could also be effective in patients ranging

to strong shoulder and elbow control, but limited hand function.

Essentially, there must be at least a few upper-extremity or

shoulder muscles retaining enough function to generate motion

or EMG.

Specific patterns and coordination of muscle activity have

been demonstrated [24], [25]. As a subject who suffered a stroke

attempts to perform repetitive movement tasks with their paretic

limb, we aimed to classify the task he or she was attempting

based on arm motion and/or EMG recordings from nonpara-

lyzed muscles even though for severe impairment the produced

motion may not closely approximate the goal task. Neural net-

works employing upper-extremity and shoulder EMG have suc-

cessfully detected shoulder and elbow angles [26] and classi-

fied movement types [27]–[29]. EMG features have been input

to standard backpropagation neural networks, clustering algo-

rithms, and self-organizing maps to classify movement. EMG

features used include discrete time intervals of integral absolute

value, difference absolute mean, variance, and autoregressive

model coefficients [27], [29]. EMG can also provide real-time

feedback to patients which has been useful when combined in a

comprehensive treatment program to regain arm function after

stroke [28]–[31]. Kinetic sensors have also been used exten-

sively to quantify and classify motion in movement disorders

[32]–[35]. Current micro-electrical-mechanical (MEMS) tech-

nology provides miniaturized accelerometers and gyroscopes to

measure motion.

The aim of this study was to design, implement, and evaluate

a prototype hardware system and algorithm to input motion and

EMG data from a stroke subject during therapy and correctly

discriminate the upper-extremity task attempted or performed.

Subjects were instrumented with motion and EMG data col-

lection instrumentation while they performed a subset of their

normal in clinic therapy tasks. Data was collected, processed,

and used to develop and test algorithms for upper-extremity

stroke therapy task discrimination.

II. METHODS

A. Subject Selection

Clinical trials were completed either at CleveMed or at a sub-

ject’s home. The study was conducted under an approved Insti-

tutional Review Board protocol and each subject provided in-

Fig. 1. Each subject was setup with six KinetiSense motion and EMG capture
systems consisting of a sensor unit and command module connected by a thin
cable.

formed consent. Clinical trials were completed with 13 subjects

including eight persons without neurological impairments (N)

and five persons diagnosed with stroke (S). A clinician screened

potential subjects diagnosed with a stroke to ensure no cogni-

tive impairments would prohibit understanding instructions and

that subjects could effectively communicate to indicate they un-

derstood upper extremity task instructions required for the clin-

ical study. Ensuring task comprehension was important since a

major study goal was to detect a particular upper extremity task

a subject was attempting even if the arm motion did not match

the goal.

All subjects diagnosed as having a stroke had some upper-ex-

tremity impairment. To document feasibility across a wide

ranging degree of motor impairment, we recruited five subjects

diagnosed as having had a stroke with varying degrees of upper

extremity motor impairment. S1 was six months poststroke

with good shoulder control, good elbow control, good wrist,

but lacked fine finger control. S2 was two years poststroke with

limited shoulder, limited elbow, limited wrist, and no hand

control. S3 was one year poststroke with good shoulder, limited

elbow, limited wrist, and no hand control. S4 was one year

poststroke with limited shoulder, no elbow, no wrist, and no

hand control. Finally, S5 was two years poststroke with good

shoulder, limited elbow, limited wrist, and no hand control.

We evaluated one arm in each subject. For stroke subjects, the

affected side was evaluated. For subjects without neurological

impairment, the side was randomly selected.

B. Experimental Setup

A 3-D motion and EMG sensing unit (KinetiSense,

CleveMed, Cleveland, OH) was used to obtain data from

each subject. Each unit consisted of two parts including a

sensor unit and command module. The sensor unit consisted

of a small, lightweight plastic enclosure that housed a flex

circuit with three orthogonal MEMS accelerometers and three

orthogonal MEMS gyroscopes. The sensor module was con-

nected to a command module with a thin cable. The command

module supplied power, transmitted data via a wireless link,

and amplified and acquired two EMG channels. An embedded

Bluetooth radio wirelessly transmitted data to a base station

computer approximately 20 ft away.

Each subject was set up with six KinetiSense sensor units on

the skin using double-sided tape (Fig. 1). Specifically, sensor

units were placed on the dorsal aspect of the middle finger, the

dorsal aspect of the hand, the dorsal aspect of the forearm, the
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TABLE I
RECORDED UPPER EXTREMITY AND SHOULDER MUSCLES

lateral aspect of the upper arm, the top of the shoulder, and on the

waist. The six corresponding command modules were clipped

onto an elastic belt worn around the subject’s waist. Twelve

channels of EMG (Table I) were recorded using the two channel

EMG input connector on each of the six command modules. A

pair of surface recording electrodes (MVAPElectrode, Newbury

Park, CA) with snap connectors was placed over each muscle

[36] and a ground electrode over the elbow.

C. Data Collection

A subset of upper-extremity therapy exercises normally com-

pleted in the clinic and that could be completed by stroke sub-

jects with a wide range of impairments was selected. A total of

five tasks were selected and are described below. One data col-

lection trial consisted of five repetitions of the selected task. For

each of the tasks below, the requested initial orientation of the

forearm was neutral. However, the initial relaxed forearm ori-

entation of stroke subjects varied as a function of spasticity.

• Task A) Finger and Wrist Extension: The subject began

with the hand and forearm in a relaxed position resting on

a table in front of the body. The subject then attempted

simultaneous fingers and wrist extension with as large an

excursion as possible, maintained the posture for a few sec-

onds, and then returned to the original position.

• Task B) Wrist Extension and Finger Flexion: The subject

began with the hand and forearm in a relaxed position on

a table in front of the body. The subject then attempted

to extend the wrist and at the same time flex the fingers,

maintain the position for a few seconds, and then return to

a relaxed position.

• Task C) Arm Sawing Motion: This task was supported or

unsupported depending upon subject impairment level.

Supported: The subject began with the hand resting near

the edge of a table in front the body. The subject then at-

tempted to slide the hand in a straight line on the table away

from the body as far as he or she could and then slide the

hand back to the body along the same line.

Unsupported: The subject began with the hand at chest

height directly in front of the body. The subject then at-

tempted to move the hand in a straight line through space

away from the body as far as he or she could and then move

the hand back to the body along the same line.

• TaskD) Forearm Supination and Wrist Deviation: Forearm

Supination and Wrist Deviation The subject began with

the hand and forearm in a relaxed position on a table in

front of the body. The subject then attempted to supinate

the forearm and radially deviate the wrist with as large an

excursion as possible, maintain it for a few seconds, and

return to a relaxed position

• Task E) Forearm Pronation and Wrist Deviation: The sub-

ject began with the hand and forearm in a relaxed position

on a table in front of the body. The subject then attempted

to pronate the forearm and radially deviate the wrist with

as large an excursion as possible, maintain it for a few sec-

onds, and return to a relaxed position.

Subjects received verbal instructions and a visual demonstra-

tion of each of the five therapy tasks. The goal was to complete

ten trials of each task. However, due to time constraints and sub-

ject comfort, a few subjects completed less than 50 trials with a

minimum of five trials of each task. Therapy task order was ran-

domized and subjects were not given a practice session. The first

attempt of the task was included in data collected for analysis.

Practice sessions were purposely excluded because one goal was

to produce a system that could be quickly trained to recognize

subject therapy exercises. Collecting data without practice ses-

sions was expected to produce a worst-case scenario to validate

algorithm development.

While subjects performed each task, the KinetiSense com-

mand modules sampled and digitized upper-extremity motion

and EMG data. Kinetic data, including three channels of linear

acceleration from accelerometers and three channels of angular

velocity from gyroscopes from each sensor module, were sam-

pled at 128 Hz. EMG was sampled at 2048 Hz, low pass filtered

with a cutoff of 1024 Hz, and then root mean square (rms) pro-

cessed in discrete bins of approximately 7.8 ms so that both the

raw kinetic sensor and processed EMG data were collected at

the same 128 Hz rate. The accelerometer, gyroscope and rms

EMG were then transmitted in a data packet from the command

modules over the wireless network to a USB Bluetooth adapter

located on the base station computer. Data was stored on the

base station computer for offline analysis.

D. Task Discrimination Algorithm Development

Automated task discrimination algorithms for each subject

were developed using different combinations of EMG, ac-

celerometer, and/or gyroscope inputs. Several important system

constraints were taken into account during development. First,

one extremely important difference in subjects diagnosed with

stroke compared to subjects without neurological impairment

was that it was not only important to detect when they “were”

performing a task, but also when they were “attempting” to

perform a task. For example, someone who could not yet move

their wrist joint may have produced repeatable patterns in

elbow muscles as they were “attempting” to move their wrist.

Second, different subjects diagnosed with stroke had different

degrees of motor impairment and coordination patterns based

on their specific injury. Therefore, large variations in coordi-

nated muscle activity existed between subjects for the same

therapy task as well as some variation within a single subject.

It would not be reasonable to have assumed that a single hard

coded algorithm could distinguish tasks among every potential
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Fig. 2. Block diagram of the EMG signal processing algorithm to provide inputs for the K-means clustering algorithm.

subject. Because of this, the goal was to implement an algo-

rithm structure that could be quickly trained in a clinician’s

office while the subject completes therapy tasks as part of their

normal visit. Additionally, it is important to remember that a

future goal is to improve motor control over time. Therefore,

as a subject would use the system more and more, coordination

patterns of motion and EMG should continue to change, albeit

slowly. The algorithm structure should be capable of adaptive

learning over time while the subject’s motor function improves.

Finally, the algorithm should take advantage of the fact that

many therapy exercises are repetitive motions. These repetitive

motions should produce specific patterns in a subset of the

signals being recorded.

Based on these constraints, development began with a simple

K-means clustering algorithm. The K-means algorithm pro-

vided many advantages including fast training and the ability

to continue to add new data over time for adaptive learning. In

general, the K-means algorithm defines a set of cluster centers

of -dimensions where is the number of quantitative input

features used to describe a task trial. Since five tasks were used

in the therapy exercise set, the K-means algorithm included

five cluster centers. Once the cluster centers were defined, the

quantitative features of a single trial were compared to each

of the cluster centers. The Euclidean distance of all quantitative

features was calculated to each cluster center. The task trial was

then assigned to the cluster center with the closest Euclidean

distance. That cluster center was then updated to reflect the

additional value.

Therefore, quantitative input features were extracted for each

task trial. These inputs were expected to capture repeatable pat-

terns generated by subjects during tasks. More specifically, the

input features were required to be a function of repeatable re-

lationships that existed between the motion of different limb

segments or EMG channels during a specific task. Addition-

ally, relationships were not be penalized for being small, i.e.,

weak muscles or small amplitude movements. Furthermore, the

algorithm was expected to produce good results regardless of

task speed. Finally, the need to normalize EMG signals to a

global maximum and minimum was removed to simplify setup

and avoid calibration before each use. As described earlier, 48

channels of data at 128 Hz were collected for each trial. This

included 12 channels of processed rms EMG, 18 channels of

linear acceleration from accelerometers and 18 channels of an-

gular velocity from gyroscopes. Based on the above criteria, the

following quantitative feature inputs were extracted.

We first attempted to use only EMG for task discrimination,

as this would minimize the requirements to power electro-

mechanical transducers and reduce system cost and size. Each

channel of rms EMG was moving window averaged using a

window size of 30 data points and then independently normal-

ized to a zero mean and standard deviation of one (Fig. 2).

In other words, normalization for a particular data channel

and trial depended only on that channel and trial. Next, every

combination of 2 out of the 12 processed EMG channels was

multiplied together on a point-by-point basis to create a new

vector of the same length. That new vector was then summed

to create a single value for the K-means input. Since there are a

total of 66 combinations of 2 out of 12 EMGs, each trial had an

input pattern vector of 66 dimensions. The same procedure was

repeated for processing both the accelerometer and gyroscope

data.

E. Task Discrimination Algorithm Testing

Separate cluster algorithms were trained and tested for each

subject. We defined initial cluster centers for each task by cal-

culating the average of the dimension pattern vectors for a ran-

domly selected 80% of data collected for each task. This 80%

was known as the training set. After the five cluster centers were

calculated, we then reapplied each of the training set pattern

vectors and calculated to which of the five clusters they were as-

signed based on Euclidean distance from the cluster centers. Ad-

ditionally, we calculated to which cluster center the remaining

20% of the trials, or the generalization set, was assigned. A cor-

rect task classification means that the trial was assigned to the

correct cluster center. The percentage of correct task classifica-

tions was calculated by dividing the number of correct cluster

center assignments by the total number of trials. The percentage

of correct task classifications for both the training and general-

ization sets was calculated for each subject.

By early visual inspection we determined that sensormodules

located at the top of the shoulder and waist provided little added

information. Therefore, they were removed from the analysis.

Sensor modules on the finger, hand, forearm, and upper arm,

and all EMG channels were included in the analysis. The above

cluster algorithm analysis was completed with e ach of the seven

combinations of sensor input types: 1) only EMG, 2) only ac-
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celerometers, 3) only gyroscopes, 4) accelerometers and gyro-

scopes, 5) EMG and gyroscopes, 6) EMG and accelerometers,

and 7) EMG, accelerometers, and gyroscopes. The objective

was to determine which sensor combination provided the best

information. Using S-Plus 2000 statistical software, we com-

pleted an analysis of variance (ANOVA) using the dependent

variable of percent correct classifications and the independent

variables of subject population (stroke or normal), therapy task

and sensor type combination.

III. RESULTS

All subjects were able to elicit some type of movement pat-

tern during the therapy tasks even if they did not match the goal

therapy task and the movements were visually indistinguishable

from attempts at different tasks. This providedmotion and EMG

inputs for the automated task discrimination algorithm. Two im-

portant questions were answered during algorithm development

and testing. First, what was the minimum combination of sensor

types required for accurate detection? Removing redundant or

nonsignificant sensors would reduce size, power consumption,

and cost. And second, what was the accuracy of therapy task

classification that could be achieved using that combination of

sensor inputs?

A. Subject Task Completion

All normal subjects were able to successfully complete the set

of five therapy tasks. Stroke subjects had mixed results. Those

that were less impaired were able to successfully complete all

tasks. Those with greater impairment had less success com-

pleting the tasks. Nevertheless, all stroke subjects elicited mo-

tion and EMG from some part of the upper-extremity while at-

tempting to complete the correct pattern of movement. There-

fore, while the movement did not closely approximate the goal

in some cases, motion and EMG were successfully recorded

(Figs. 3–5).

B. Sensor Reduction Analysis

The trained algorithms structures allowed generalization of

features to produce accurate task discrimination. When all col-

lected data (EMG, accelerometers, and gyroscopes) was used

in the ANOVA computation, sensor combination, subject pop-

ulation, and therapy task all were significant input variables.

The grand means of task discrimination accuracy for popula-

tion were 89.61% for normals and 82.27% for stroke indicating

the algorithms worked slightly better for normals, which should

be expected. The grand means for different sensor combinations

are shown (Table II). While EMG alone produced the worst ac-

curacy at 78.25%, it was important to retain EMG as in input pa-

rameter since it also reveals important information about motor

recovery and is extremely useful as a real-time feedback mech-

anism to isolate single muscle activity. Therefore, at least one of

the additional sensor types needed to be added to improve accu-

racy. Sensor combination was a significant variable

when all sensor combination inputs were used in the ANOVA.

However, when all trials using EMG alone were removed from

the ANOVA, sensor combination was not a significant variable

. This revealed that task discrimination using only

cEMGcan be improved by adding at least one of the other sensor

Fig. 3. The rms processed and moving window averaged EMG for subject
N1 is shown for six channels including ECU, FD, ECR, palmaris longus (PL),
pronator teres (PT), and extensor digitorum (ED). Two separate tasks are illus-
trated including Task A-Finger and wrist extension and Task B-Finger flexion
with wrist extension.

Fig. 4. Moving window averaged angular velocity for subject N1 is shown for
each gyroscope axis of the sensor unit worn on the hand and finger. Two sepa-
rate tasks are illustrated including Task A-Finger and wrist extension and Task
B-Finger flexion with wrist extension.

options, accelerometers or gyroscopes. Adding both types of

sensors to the task discrimination algorithm does not provide

any further significance than only one. Gyroscopes were chosen

over accelerometers since they act independently of gravity and

can more easily be used to calculate angular range of motion

and quantify other therapy parameters.

C. Task Discrimination Accuracy

The system accurately classified therapy tasks using the com-

bination of 12 channels of EMG and 12 gyroscope inputs from
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Fig. 5. Moving window averaged linear acceleration for subject N1 is shown
for each accelerometer axis of the sensor unit worn on the hand and finger. Two
separate tasks are illustrated including Task A-Finger and wrist extension and
Task B-Finger flexion with wrist extension.

TABLE II
GRAND MEANS CALCULATED FOR ALL SENSOR INPUT COMBINATION TYPES

DURING AN ANOVA

Fig. 6. Percent correct task classification for each task (A, B, C, D, E) is aver-
aged over each subject. Data is separated by normals or stroke and training or
generalization results.

four sensor units (each with three orthogonal gyroscopes) on the

finger, hand, forearm, and upper arm. Results are shown for sep-

arate therapy tasks across all subjects (Fig. 6) and for separate

subjects across all therapy tasks (Fig. 7). The trained algorithm

structure accurately classified therapy task trials that were a part

of the training set and also generalized to accurately classify the

set of generalization data. All but one (Task D of the generaliza-

tion set in stroke subjects) showed at least 80% accuracy. The

Fig. 7. Percent correct task classification for each subject is averaged over
every task for that subject.

large standard deviations in some of the generalization results

are due to the limited number of trials. The system accurately

classified which task a subject was attempting to perform de-

spite the fact that those with severe impairment produced move-

ments that did not resemble the goal tasks and were visually in-

distinguishable from other tasks.

IV. DISCUSSION

A hardware technology platform consisting of accelerome-

ters, gyroscopes, and electromyography was implemented to

transmit data over a wireless network to a base station com-

puter. Multiple motion sensor outputs and multichannel EMG

data were collected from the upper-extremity as normal and

stroke subjects completed a set of five upper-extremity stroke

therapy tasks. The collected data was used to successfully train

algorithms to accurately classify the therapy task being com-

pleted by the subject.

A. Task Discrimination Accuracy and Sensor Selection

The results represent an important first step in the develop-

ment of a user-worn system for upper-extremity motor rehabili-

tation after stroke. The compact, wireless, prototype system ac-

curately classified the therapy task not only when a normal or

slightly impaired subject was “completing” the therapy task, but

also when a stroke subject with severe impairment was only “at-

tempting” to complete the goal task. The accuracy rates above

80% for all but one data point should be considered good in light

of the fact that subjects were not allowed to practice tasks be-

fore data collection and the limited number of trials collected.

Allowing a subject to practice and collecting more data should

produce even more repeatable patterns and further improve ac-

curacy results. Furthermore, it is important to note that during

therapy sessions subjects should not continually produce ab-

normal movements or movements with other parts of the body

such as the trunk to mimic the desired motion of the upper ex-

tremity. However, for subjects that are severely impaired, these

may initially be the only signals available to indicate the actual

task a subject is trying to complete. Once the desired task is
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detected, interventions such as functional electrical stimulation

(FES) described below, may be incorporated into the system to

reinforce correct motor patterns and assist with the task during

therapy.

One important goal of this initial study was to determine the

appropriate sensor types to use for correct classification and fur-

ther system hardware development. Electromyography is an im-

portant parameter to monitor for home-therapy applications as it

provides insight into individual muscle recovery and is an effec-

tive tool for real-time display feedback during therapy. There-

fore, EMG was included as an input sensor. However, normal-

ization is typically a problematic issue in EMG applications es-

pecially in the home environment. Normalizing each channel of

data to a zero mean and standard deviation of one based only

on the current trial solved this issue and did not penalize muscle

activity for being of small amplitude compared to other stronger

muscles. Additionally, it alleviated the need for a calibration

routine. The combination of EMG and gyroscope data provided

sufficient information to accurately detect the therapy task being

completed. Gyroscopes were selected over accelerometers since

simpler signal processing techniques can be applied to gyro-

scope data to determine parameters such as range-of-motion

during the repetitive therapy tasks. The accelerometers did not

add significant value to the task discrimination scheme and re-

moving them will reduce size, cost, and power consumption.

Finally, the processing technique of multiplying each EMG

channel by the other EMG channels and each angular velocity

input vector by the other angular velocity vectors on a point by

point basis to create a new vector related to the coordination

patterns between EMG or angular velocity proved valuable. For

example, Fig. 3 illustrates that extensor carpi ulnaris (ECU) and

extensor carpi radialis (ECR) act as agonists in both Task A and

Task B. However, ECU and flexor digitorum (FD) act differently

depending on the Task. During Task A they act out of phase with

each other while in Task B they act in phase with each other. The

sum of this new vector created by multiplying different EMG or

motion channels together described if muscles or limb segments

acted agonistically or antagonistically during a therapy task. If

muscles or limb segments acted as agonists it would produce

very large positive numbers when the new vector was summed.

If they were acting as antagonists, it would produce very large

negative numbers.When therewas little positive or negative cor-

relation between the muscles it would produce numbers closer

to zero. These single value inputs (Fig. 2) describing the coordi-

nation patterns between muscles or motion provided significant

information for accurate task classification.

B. Sensor Reduction Analysis

A home-therapy system must be able to accurately classify

the therapy task a subject is performing to provide feedback,

monitor compliance, and allow the possibility for intervention.

For example, correct classification allows effective real-time

feedback to a subject to encourage them or provide information

about repetitions and/or task time remaining as they complete

therapy tasks. The system needs to have accurate task classifi-

cation or a subject may become frustrated with incorrect feed-

back.

While we were able to accurately detect what task a subject

was attempting, some stroke subjects could not accurately com-

plete the requested tasks due to muscles weak or paralyzed from

the stroke. Functional electrical stimulation (FES) can be used

to integrate weak or paralyzed muscles into therapy. It has been

established that repetitive motor activation of both simple and

complexmovements improves the rate and amount of functional

recovery in stroke patients. Additionally, FES has been shown to

improve functional outcomes during therapy. Therefore, since

we have demonstrated the ability to accurately detect a task a

subject is performing, we could potentially intervene with FES

to the appropriate muscles to assist the therapy task. FES is ad-

vantageous compared to other stroke therapies since it is non-

invasive with minimal side effects [37]–[46]. FES electrically

stimulates muscles to create a contraction. Some post stroke pa-

tients have paralyzed muscles while others have weak muscles

that are overpowered by spasticity of an opposing muscle group.

Therefore, a muscle normally required for a therapy task, but in-

active due to stroke could potentially be included during therapy

using FES. By accurately detecting the task a subject is per-

forming, FES could be applied to specific target muscles during

their therapy task attempts to improve motor performance. Ad-

ditionally, utilizing FES at the sensory level helps the user lo-

calizemuscles they are trying to use for a particular therapy task.

Sensory stimulation in conjunction with physiotherapy may im-

prove motor skills. Providing feedback from the subject’s own

movements facilitates motor learning and may drive cortical re-

organization.

Home rehabilitation has shown effectiveness in stroke pa-

tients [5], [47]–[49]. However, important factors that should be

considered when developing a system for at home therapy in-

clude patient compliance time and ease of use. First, home re-

habilitation should be provided with the same or greater inten-

sity as inpatient treatment [50]. Therefore, a system designed

for home use should encourage patients to complete therapy at

home. A first step toward that end was achieved in this work

by accurately classifying therapy tasks through EMG and mo-

tion sensors. The future envisioned system will use EMG, mo-

tion, and task classification to control graphical real-time feed-

back and video games to encourage patient use. Furthermore,

the envisioned system will provide easy use by upgrading the

hardware technology platform into an integrated sleeve-worn

system easily donned by subjects at home. We plan to inte-

grate the five KinetiSense systems and an FES device into a

single unit to provide a complete, clinically deployable system

for home therapy. Blanking will be an important feature in the

next generation system to avoid stimulation artifact from con-

taminating the EMG. A sleeve-worn design should minimize

problems with repeatable sensor and electrode placement that

could cause cross talk from other muscles and produce errors in

trained task recognition algorithms. Furthermore, a sleeve em-

bedded with the motion sensors and labeled with appropriate

pockets for electrode placement should simplify home setup for

users and his or her caregivers. A system that allows subjects

to continue therapy outside the clinic and monitors compliance

should further improve functional recovery by increasing time

spent in therapy. Providing multimodal inputs to the subject

during therapy such as real-time visual feedback and sensory in-
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puts from FES driven muscles actuated by muscle coordination

patterns may help drive cortical reorganization, increase motor

function and improve quality of life.
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